397 Little Neck Road, Bldg 3300 Virginia Beach, VA 23452 Phone (757)639-3153 Fax (757)318-9151

DynamicHealthServices.org diane@dynamichealthservices.org

POWER-TIME-WEIGHT COMPARISONS

By Diane Haupt, MS, PT
The following table compares average power in watts to 40 km time trial times on a flat course for three hypothetical riders of different combined bike and body weights. For example, if your lactate test reveals you produce 210 watts at a HR of 155 bpm and you plan to hold that HR/perceived level of effort for a 40 km time trial and your weight is 160 and your bike weighs 20 pounds, you would average approximately 20.8 mph and cover the course in approximately 1:11:40. Keep in mind these are only estimates and exact times will be influenced by the course, weather conditions, aerodynamics, etc.

	120	Pounds	$\mathbf{1 5 0}$	Pounds	$\mathbf{1 8 0}$	Pounds
Watts	Time	Speed	Time	Speed	Time	Speed
150	$1: 18: 21$	19.0	$1: 20: 28$	18.5	$1: 21: 56$	18.2
160	$1: 17: 32$	19.2	$1: 18: 22$	19.0	$1: 20: 29$	18.5
170	$1: 16: 07$	19.6	$1: 17: 24$	19.2	$1: 18: 22$	19.0
180	$1: 13: 31$	20.3	$1: 14: 16$	20.1	$1: 16: 09$	19.6
190	$1: 12: 24$	20.6	$1: 13: 32$	20.3	$1: 14: 18$	20.0
200	$1: 11: 37$	20.8	$1: 12: 27$	20.6	$1: 13: 33$	20.2
210	$1: 09: 41$	21.4	$1: 10: 21$	21.2	$1: 11: 40$	20.8
220	$1: 08: 41$	21.7	$1: 09: 44$	21.4	$1: 10: 23$	21.2
230	$1: 08: 07$	21.9	$1: 08: 07$	21.9	$1: 09: 45$	21.3
240	$1: 06: 24$	22.4	$1: 06: 58$	22.2	$1: 08: 11$	21.8
250	$1: 05: 30$	22.7	$1: 0625$	22.4	$1: 07: 00$	22.2
260	$1: 04: 59$	22.9	$1: 05: 32$	22.7	$1: 06: 27$	22.4
270	$1: 03: 27$	23.5	$1: 03: 58$	23.3	$1: 05: 04$	22.9
280	$1: 02: 38$	23.8	$1: 03: 29$	23.5	$1: 04: 00$	23.3
290	$1: 02: 10$	23.9	$1: 02: 46$	23.7	$1: 03: 31$	23.4
300	$1: 00: 50$	24.5	$1: 01: 21$	24.3	$1: 02: 21$	23.9
310	$1: 00: 07$	24.8	$1: 00: 54$	24.4	$1: 01: 23$	24.3
320	$59: 56$	24.8	$1: 00: 42$	24.5	$1: 01: 11$	24.3
330	$58: 39$	25.4	$59: 34$	25.0	$1: 00: 02$	24.8
340	$58: 19$	25.5	$58: 46$	25.3	$59: 41$	24.9

350	$57: 40$	25.8	$58: 23$	25.5	$58: 47$	25.3
360	$57: 08$	26.1	$57: 33$	25.9	$58: 15$	25.6
370	$56: 24$	26.4	$57: 14$	26.0	$57: 40$	25.8
380	$56: 03$	26.6	$56: 27$	26.4	$57: 18$	26.0
390	$55: 21$	26.9	$55: 56$	26.6	$56: 21$	26.4
400	$55: 01$	27.0	$55: 24$	26.9	$56: 03$	26.6

So now that you know how watts equate to riding on the flats, how do you determine power output for a hilly race you have coming up? The following is a simple formula for the power required to climb hills. It is quite accurate for speeds less than 10 mph (i.e. steep hills or long rides/races), when wind resistance and rolling resistance are not very significant:

Power (watts) $=2 \times$ Weight (lb) X Speed (mph) X Gradient (as a fraction)
Suppose you still weigh 180 pounds with your bike and you want to average 10 mph up a 7% grade hill. Using the formula above:

$$
2 \times 180 \text { lbs. X } 10 \text { mph X } .07 \text { (gradient) = } 252 \text { watts }
$$

Suppose you live in Virginia Beach and don't have any hills to train on but want to prepare for a hilly time trial. Referring back to the chart above, you would have to hold a speed of approximately 22.2 mph on the flats of Pungo to simulate riding up the 7% grade hill at 10 mph .

